POT library and its examples
Optimal Transport is one promising algorithm for handling data distributions. It provides a different metric compared to measures like Kullback-Leibler divergence or entropy that have been used in the past. As previously discussed in this article(https://eye.kohei-kevin.com/2023/06/22/the-concept-of-optimal-transport/), Optimal Transport allows for a comparison of data distributions that aligns with human intuition since it doesn’t directly compare densities. POT (Python Optimal Transport) is a library dedicated to dealing with Optimal Transport, and it encompasses numerous use cases. In this article, we’ve explored one of those cases.
POT page is here (https://pythonot.github.io/index.html)
Input Images
Result
Now we got a picture of Antelope Canyon early in the morning
Code
# Authors: Remi Flamary <remi.flamary@unice.fr>
# Stanislas Chambon <stan.chambon@gmail.com>
#
# License: MIT License
# sphinx_gallery_thumbnail_number = 3
import os
from pathlib import Path
import numpy as np
from matplotlib import pyplot as plt
import ot
rng = np.random.RandomState(42)
def im2mat(img):
"""Converts and image to matrix (one pixel per line)"""
return img.reshape((img.shape[0] * img.shape[1], img.shape[2]))
def mat2im(X, shape):
"""Converts back a matrix to an image"""
return X.reshape(shape)
def minmax(img):
return np.clip(img, 0, 1)
def main(
image1_path: str,
image2_path: str,
export_path: str
):
# Loading images
this_file = os.path.realpath('__file__')
data_path = os.path.join(Path(this_file).parent.parent.parent, 'data')
I1 = plt.imread(image1_path).astype(np.float64) / 256
I2 = plt.imread(image2_path).astype(np.float64) / 256
X1 = im2mat(I1)
X2 = im2mat(I2)
# training samples
nb = 500
idx1 = rng.randint(X1.shape[0], size=(nb,))
idx2 = rng.randint(X2.shape[0], size=(nb,))
Xs = X1[idx1, :]
Xt = X2[idx2, :]
# EMDTransport
ot_emd = ot.da.EMDTransport()
ot_emd.fit(Xs=Xs, Xt=Xt)
transp_Xs_emd = ot_emd.transform(Xs=X1)
Image_emd = minmax(mat2im(transp_Xs_emd, I1.shape))
# SinkhornTransport
ot_sinkhorn = ot.da.SinkhornTransport(reg_e=1e-1)
ot_sinkhorn.fit(Xs=Xs, Xt=Xt)
transp_Xs_sinkhorn = ot_sinkhorn.transform(Xs=X1)
Image_sinkhorn = minmax(mat2im(transp_Xs_sinkhorn, I1.shape))
ot_mapping_linear = ot.da.MappingTransport(
mu=1e0, eta=1e-8, bias=True, max_iter=20, verbose=True)
ot_mapping_linear.fit(Xs=Xs, Xt=Xt)
X1tl = ot_mapping_linear.transform(Xs=X1)
Image_mapping_linear = minmax(mat2im(X1tl, I1.shape))
ot_mapping_gaussian = ot.da.MappingTransport(
mu=1e0, eta=1e-2, sigma=1, bias=False, max_iter=10, verbose=True)
ot_mapping_gaussian.fit(Xs=Xs, Xt=Xt)
X1tn = ot_mapping_gaussian.transform(Xs=X1) # use the estimated mapping
Image_mapping_gaussian = minmax(mat2im(X1tn, I1.shape))
#plot org
plt.figure(1, figsize=(6.4, 3))
plt.subplot(1, 2, 1)
plt.imshow(I1)
plt.axis('off')
plt.title('Image 1')
plt.subplot(1, 2, 2)
plt.imshow(I2)
plt.axis('off')
plt.title('Image 2')
plt.tight_layout()
# plt.savefig(export_path)
plt.figure(2, figsize=(6.4, 5))
plt.subplot(1, 2, 1)
plt.scatter(Xs[:, 0], Xs[:, 2], c=Xs)
plt.axis([0, 1, 0, 1])
plt.xlabel('Red')
plt.ylabel('Blue')
plt.title('Image 1')
plt.subplot(1, 2, 2)
plt.scatter(Xt[:, 0], Xt[:, 2], c=Xt)
plt.axis([0, 1, 0, 1])
plt.xlabel('Red')
plt.ylabel('Blue')
plt.title('Image 2')
plt.tight_layout()
plt.figure(2, figsize=(10, 5))
plt.subplot(2, 3, 1)
plt.imshow(I1)
plt.axis('off')
plt.title('Im. 1')
plt.subplot(2, 3, 4)
plt.imshow(I2)
plt.axis('off')
plt.title('Im. 2')
plt.subplot(2, 3, 2)
plt.imshow(Image_emd)
plt.axis('off')
plt.title('EmdTransport')
plt.subplot(2, 3, 5)
plt.imshow(Image_sinkhorn)
plt.axis('off')
plt.title('SinkhornTransport')
plt.subplot(2, 3, 3)
plt.imshow(Image_mapping_linear)
plt.axis('off')
plt.title('MappingTransport (linear)')
plt.subplot(2, 3, 6)
plt.imshow(Image_mapping_gaussian)
plt.axis('off')
plt.title('MappingTransport (gaussian)')
plt.tight_layout()
plt.savefig(export_path)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(
description='Domain Adaptation using Optimal Transport using POT example.'
)
parser.add_argument(
'--image1_path', '-P1', type=str, default='./image/antelope.jpg', help='path for image1'
)
parser.add_argument(
'--image2_path', '-P2', type=str, default='./image/early_morning.jpg', help='path for image2'
)
parser.add_argument(
'--export_path', '-EP', type=str, default='./image/result.jpg', help='path for image2'
)
args = parser.parse_args()
main(
args.image1_path,
args.image2_path,
args.export_path
)