
About
Forces Equilibrium
KU+\lambda B^T=F\\ B U=0
\begin{align} \begin{bmatrix} K & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} U \\ \lambda \end{bmatrix} = \begin{bmatrix} F \\ 0 \end{bmatrix} \end{align}
How to get Displacement and React Force
\begin{bmatrix} U \\ \lambda \end{bmatrix} = \begin{bmatrix} K & B^T \\ B & 0 \end{bmatrix} ^{-1} \begin{bmatrix} F \\ 0 \end{bmatrix}
Objective for Topology Optimization
In Topology Optimization problem, we are going to optimize the shape with respect to an objective, so called “Compliance”.
\min_x C(x) = F^T U(x)
Total Differential of the Equation
\frac{d}{dx} \left( K u + B^T \lambda - F \right) = 0
\frac{dK}{dx} u + K \frac{du}{dx} + \frac{dB^T}{dx} \lambda + B^T \frac{d\lambda}{dx} = 0\\ \space \\ \begin{align} K \frac{du}{dx} + B^T \frac{d\lambda}{dx} = -\left(\frac{dK}{dx} u + \frac{dB^T}{dx} \lambda \right)\space \end{align}
B \frac{du}{dx} + \frac{dB}{dx} u = 0\\ \space\\ \begin{align} B \frac{du}{dx}=0 \space \end{align}
The (3) means that u is a kernel (in null space) of B. But this is already satisfied since the equation is derived from (4).
\begin{align} Bu = 0 \end{align}
So, (3) and (4) are summarized into (5)
\begin{align} \begin{bmatrix} K & B^T \\ B & 0 \end{bmatrix} \begin{bmatrix} \frac{du}{dx} \\ \frac{d\lambda}{dx} \end{bmatrix} = -\begin{bmatrix} \frac{dK}{dx} u + \frac{dB^T}{dx} \lambda \\ B \frac{du}{dx} + \frac{dB}{dx} u \end{bmatrix} = \begin{bmatrix} -\frac{dK}{dx} \\ 0 \end{bmatrix} \end{align}
But, Lower Blocks does not mean anything, right? That just says that zero equals zero. Therefore,
\begin{align} K \frac{du}{dx} + B^T \frac{d\lambda}{dx} = -\frac{dK}{dx} u\space \end{align}
What we are interested in is that how displacement varies with respect to x. So, the second term in the left is generally ignored.
\begin{align} K \frac{du}{dx} = -\frac{dK}{dx} u\space \end{align}
As K is the second order form of X, it is differentiated as follows
K=XK_{org}X\\ \frac{dK}{dx}=2K_{org}X
Finally, got the derivation of u.
\begin{align} \frac{du}{dx} \simeq -K^{-1}\frac{dK}{dx} u = -2K^{-1}K_{org}X u \space \end{align} \\ \text{where } K=XK_{org}X